Studies of parametrically excited non-linear MDOF systems at parametric resonances
نویسندگان
چکیده
An increasing number of MEMS devices use parametric excitation (PE) to outperform conventional designs. These systems are operated at parametric resonance. Different to standard cases of resonance, at parametric resonances the vibration’s amplitudes increase faster and within a smaller interval. The amplification is much larger and only limited by non-linearities. So far the focus has mostly been on one degree of freedom (1DOF) systems. This is partly caused by a lack of methods to investigate and design multi degree of freedom (MDOF) systems time-efficiently. Restricting the systems to 1DOF ignores the opportunity to make use of PE effects only available in MDOF systems: parametric combination resonances and parametric anti-resonances, where an enhanced damping behaviour can be observed. The paper demonstrates how to approximate non-linear MDOF PE systems with 1DOF models. This leads to a generalised, dimensionless model applicable to many systems. Approaches are presented for investigating such a reduced non-linear 1DOF PE model analytically and semianalytically at parametric resonances using averaging methods. For a 2DOF system the results are validated numerically by continuation methods and time simulations. Limits of both the analytical and the semi-analytical approaches are discussed.
منابع مشابه
The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)
In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...
متن کاملNumerical Investigations of Parametrically Excited Non-linear Multi Degree of Freedom Micro-electromechanical Systems
More and more systems exploit parametric excitation (PE) to improve their performance compared to conventional system. Especially in the field of micro-electromechanical systems (MEMS) such technologies rapidly gain in importance. Different to conventional resonance cases PE may destabilise the system’s rest position when parametrically excited time-periodically with a certain PE frequency. At ...
متن کاملAn Intensity Measure for Seismic Input Energy Demand of Multi-Degree-of-Freedom Systems
Nonlinear dynamic analyses are performed to compute the maximum relative input energy per unit mass for 21 multi-degree-of-freedom systems (MDOF) with preselected target fundamental periods of vibration ranging from 0.2 to 4.0 s and 6 target inter-story ductility demands of 1, 2, 3, 4, 6, 8 subjected to 40 the earthquake ground motions. The efficiency of the several intensity measures as an ind...
متن کاملParametrically Excited Helicopter Ground Resonance Dynamics With High Blade Asymmetries
The present work is aimed at verifying the influence of high asymmetries in the variation of in-plane lead-lag stiffness of one blade on the ground resonance phenomenon in helicopters. The periodical equations of motions are analyzed by using Floquet’s Theory (FM) and the boundaries of instabilities predicted. The stability chart obtained as a function of asymmetry parameters and rotor speed re...
متن کاملComplicated Regular and Chaotic Motions of the Parametrically Excited Pendulum
Several new types of regular and chaotic behavior of the parametrically driven pendulum are discovered with the help of computer simulations. A simple physical explanation is suggested to the phenomenon of subharmonic resonances. The boundaries of these resonances in the parameter space and the spectral composition of corresponding stationary oscillations are determined theoretically and verifi...
متن کامل